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A tale between forecasting and decisions

* Typical focus on forecast accuracy
» A “forecasting microcosm”!

* Forecasts > Decisions
° Actions taken sequentially
* Accuracy is a convenient (but incomplete) proxy
* Different loss/objective functions become prominent

* Forecasts used for decisions depend on the choice of

error metrics

* |nconsistent findings on the relationship between the
quality of forecasts and decisions

* Choice of accuracy metric ‘should’ match the decision
context (Athanasopoulos & Kourentzes 2024)



A tale between forecasting and decisions

(Quantile) Forecasts are often used as an input for
inventory control

* Accurate point (mean) forecasts = Useful quantile forecasts =
Inventory optimisation = Low inventory costs

Accuracy (MSE) is used as a proxy of the standard deviation
of the forecasts

* The error follows a normal distribution, and its variance is
estimated well

What happens if the model is wrong?

e The error won’t follow a normal distribution = variance?

Some argue that forecasting performance needs to be
assessed with inventory decision metrics



A tale between forecasting and decisions

However, the literature in the interface between forecasting
and inventory management has a different story...

* Alow inventory cost is characterized by biased forecasts
(Kourentzes et al 2020)

* The relationship between accuracy and inventory costs
depends on the uncertainty of the time series and the
simulation design (Fildes & Kingsman 2013)

Problems in reality:
* We do not know the demand

* We need an alternative measure to assess forecasts that
relates well with inventory decisions (not only accuracy)
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From users’ perspectives...

“IT]he rolling forecast signals are way too noisy and have
no value to us. We would rather ignore those
troublesome data in forecasting processes.”

Chuang et al (2021)

& &
Chuang, H.H., Chou, Y. and Oliva, R. (2021) ‘Cross-item learning for volatile demand forecasting: An intervention with predictive analytics’,
Journal of Operations Management, 67(7), pp. 828—852. Available at: https://doi.org/10.1002 /joom.1152. CMAF



From users’ perspectives...

 We conducted a small online survey amongst practitioners
to understand the prevalence of the practice in firms

Table 1: Summary survey results (sample size — 21)

Forecasting model re-  Responses Are forecasts adjusted to be more 'stable’ Responses

view interval over time?

Every time 71.43% No 19.05%

Longer review intervals 28.57% Yes, in an ad-hoc manner 33.33%
Yes, rule-based changes 47.62%

* Few of them update their models infrequently

* Adjustments to achieve ‘stable’ forecasts
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So what?

* |n practice, accuracy might not be sufficient enough
to achieve desirable inventory decision

* Decision makers prefer forecasts that are not so
‘jittery” across origins

We need a way to define and measure
this ‘overlooked’ property of forecasts

“Congruence”
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Congruence dS error measure

* Let’s think about how we produce forecasts
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Forecast congruence

 We can then construct a rolling-origin forecast error matrix

Column-wise (horizon) = accuracy (MSE)

*  Row-wise = congruence
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Forecast congruence

 We can then construct a rolling-origin forecast error matrix

Column-wise (horizon) = accuracy (MSE)

*  Row-wise = congruence
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* MSE and congruence are constructed from a matrix

e Differ in value due to different lengths in rows and columns
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Under- and over-congruent forecasts

How can we assess congruence?

Constant DGP
forecasts forecast
=0 v r=1" T

\ \ Under-congruent

Over-congruent
forecast
forecast

What do under- and over-congruent forecasts mean?
e T <717, then the forecasts are over-congruent
« 7> 1", then the forecasts are under-congruent

* |t'sinspired from the idea of over-fitting and under-fitting



Under- and over-congruent forecasts

Can we calculate the true congruence or 7°7?
If we know the data generating process, we can!

If the process is an AR(1)

l l
T}~ z(l — i+ Datef + (Z(l — i+ 1)ai€t_i+1>
i=1 i=1

Congruence is affected by
* Model parameters (a)

* Forecast horizon (1)

- Variance of the innovations (¢7_;, ;)
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Experiments

* We aim to observe a relationship between:
* Accuracy metrics v congruence
* Accuracy metrics v inventory decision metrics

 Congruence v inventory decision metrics

* We need to design two tasks:

* Forecasting task = Inventory task

e Data for analysis

e Simulated data

» Different processes, from simple AR to non-stationary seasonal processes

e UK-based FMCG dataset



Experiments

Standard order-up-to inventory policy with lost sales
Target service levels: 90%, 95%, and 99%
Lead time: 3 and 5 periods

Review: 1 period (?)

t+L

S =G+ Qr(a),
1=t

Q;(q) is the buffer stock for anticipated demand

* Empirical prediction intervals

Implemented for both datasets



Experiments

Forecasting models/ methods Demand generating
* Naive processes
* ETS (re-estimate on each origin) *  ARIMA(1,0,0)

e ETS-Static (no re-estimation) .
e ETS-Combination (Kolassa) .
e ETS-Shrinkage (Pritularga et al) .
*  MAPA (Kourentzes et al) .
 Demand generating process (DGP)

ARIMA(1,0,1)
ARIMA(1,1,1)
SARIMA(1,0,0)(1,0,1)
SARIMA(1,1,0)(1,0,1)

400 series for each process, with 132 Evaluation: rolling-origin
monthly observations approach
* 36 obs: burn-in period for inventory * Increased training set

* 48 obs: training set .
* 48 obs: test set

Until test set is all used



Metrics we use

Forecasting metrics

RMSE (scaled): point
forecast accuracy

Pinball loss (scaled):
‘accuracy’ for prediction
intervals

Congruence

Inventory decision metrics

CSL difference
Lost sales
Mean stock-on-hand

SD(stock-on-hand)

SD(orders)

%periods that order placed
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Simulation findings

Assessed forecasting models with an inventory decision trade-off
The closer to zero, the better the inventory decisions are
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Over-congruent forecasts perform well in this trade-off



AAccuracy

Simulation findings

We control the DGP by taking the difference of each method with

DGP, shown with A
*  We know the true congruence as we know the DGP

Low correlations between Congruence v Accuracy, Congruence v
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FMCG findings

FMCG dataset confirms our simulation findings
Low correlations between Accuracy, Pinball, and Congruence

Congruence contains a different set of information, given that
accuracy and congruence come from the same error matrix
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Mean(stock)

Sum(lost sales)

FMCG findings

CSL difference

Congruence affects SD(order) and SD(stock) significantly

Accuracy and Pinball help us achieve desirable CSL
Congruence affects how often orders are placed
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Discussion (1)

 Congruence does not replace accuracy, but it complements!

e Select forecasts that are congruent to the point where
congruence does not harm accuracy
* We have a set of accurate forecasts, pick the most congruent ones!
* Over-congruence is not too bad; under-congruence is bad!

* There are models and methods that achieve some levels of
congruence

MAPA - smoothing effects due to temporal aggregation make the
forecasts congruent

* ETS-Shr = shrinking parameters in dynamic models but use it
carefully as it tends to produce over-congruent forecasts



e
Discussion (2)
* Congruence has an implication for managing bull-whip effect;
useful for supply chain managers!

* Bull-whip effect is measured

var(o)
var(d;_1)’

BR =

 |f we think the number of orders as an estimated conditional

value: o
_ var(0¢|Ust—n, Le—n)

BR = .
var(y;|Z;_p)

?

* Then, congruence comes to play!

var(0¢|Jse—h, Zi—n) = @+ B7z,_,



e
Decision-oriented forecast evaluation

e Accuracy is not the end goal of a forecasting task

* Follow-up questions: Do users use the forecasts? Do the forecasts
result in ‘better’ decision outcomes?

* Looking at forecasting from a broader perspective from
* Modeler = the current establishment

e User and decisions =2 limited exploration

* Challenge the notion of accurate forecasts
accurate forecasts 2 useful forecasts

* Think of “usefulness” as a concept that has dimensions:
* The first one is congruence!

e The second one is... future research ©



Decision making processes

Do the users
TRUST and USE

. the forecasts to
make decisions?

Decision makers
v Accuracy Congruence Supply chz.;un
B * Bullwhip effect

P il <~__
~

Modeller ‘Information’ ~
~
(Forecasts) ~ .

~ Inventory
Service level
e |Lostsales

Forecasting (my) domain




Thank you for your attention!
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Stability or congruence?

 The literature offers a similar concept called ‘forecast instability’ but we believe
that the terminology is misleading

e Stability is a well-defined concept, at least in statistical forecasting models
especially in single source of error state-space framework (Hyndman et al, 2008, p.
36).

e A modelis forecastable if
t—1
Vtjt-1 = ar + Z CiVt—j
Jj=1

lim a; = a and Z}’-’;l|cj| < ©

t—o0
where a; = W'D 'xgandc; =w'D/ g

* Amodelis stable if (1) D converges to a null matrix as j increases and (2) a; and ¢;
decay exponentially

*  Stability characterises a model, not a forecast. Thus, we are careful in using the
term ‘stability’ in forecasts. @ 8
CMAF
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